Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474651

RESUMO

Valued for their ability to rapidly kill multiple tumor cells in succession as well as their favorable safety profile, NK cells are of increasing interest in the field of immunotherapy. As their cytotoxic activity is controlled by a complex network of activating and inhibiting receptors, they offer a wide range of possible antigens to modulate their function by antibodies. In this work, we utilized our established common light chain (cLC)-based yeast surface display (YSD) screening procedure to isolate novel B7-H3 and TIGIT binding monoclonal antibodies. The chicken-derived antibodies showed single- to low-double-digit nanomolar affinities and were combined with a previously published CD16-binding Fab in a 2+1 format to generate a potent NK engaging molecule. In a straightforward, easily adjustable apoptosis assay, the construct B7-H3xCD16xTIGIT showed potent apoptosis induction in cancer cells. These results showcase the potential of the TIGIT NK checkpoint in combination with activating receptors to achieve increased cytotoxic activity.


Assuntos
Imunoterapia , Células Matadoras Naturais , Anticorpos Monoclonais , Receptores Imunológicos , Apoptose
2.
Bioconjug Chem ; 34(6): 1072-1083, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37262436

RESUMO

Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker µ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.


Assuntos
Peptídeos , Humanos , Peptídeos/farmacologia
3.
Org Lett ; 25(24): 4439-4444, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306339

RESUMO

Hi1a is a naturally occurring bivalent spider-venom peptide that is being investigated as a promising molecule for limiting ischemic damage in strokes, myocardial infarction, and organ transplantation. However, the challenges associated with the synthesis and production of the peptide in large quantities have slowed the progress in this area; hence, access to synthetic Hi1a is an essential milestone for the development of Hi1a as a pharmacological tool and potential therapeutic.


Assuntos
Canais Iônicos Sensíveis a Ácido , Peptídeos , Ligadura , Peptídeos/química , Venenos de Aranha/metabolismo , Venenos de Aranha/farmacologia , AVC Isquêmico/fisiopatologia , Infarto do Miocárdio/fisiopatologia
4.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117223

RESUMO

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Assuntos
Toxinas Biológicas , Urtica dioica , Austrália , Dor , Peptídeos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
5.
Toxins (Basel) ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36136538

RESUMO

µ-Conotoxins are small, potent, peptide voltage-gated sodium (NaV) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype NaV1.7 has so far been limited. We recently identified a novel µ-conotoxin, SxIIIC, which potently inhibits human NaV1.7 (hNaV1.7). SxIIIC has high sequence homology with other µ-conotoxins, including SmIIIA and KIIIA, yet shows different NaV channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of µ-conotoxins SxIIIC, SmIIIA and KIIIA at hNaV channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related µ-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNaV1.7. Analysis of other µ-conotoxins at hNaV1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of µ-conotoxins to inhibit hNaV1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNaV1.4. Comparison of µ-conotoxin NMR solution structures identified differences that may contribute to the variance in hNaV1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNaV1.7, when compared to KIIIA. This work could assist in designing µ-conotoxin derivatives specific for hNaV1.7.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Analgésicos/química , Analgésicos/farmacologia , Animais , Conotoxinas/química , Conotoxinas/farmacologia , Cisteína , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Canal de Sódio Disparado por Voltagem NAV1.7 , Peptídeos , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
6.
J Med Chem ; 65(8): 6191-6206, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420805

RESUMO

Inherent susceptibility of peptides to enzymatic degradation in the gastrointestinal tract is a key bottleneck in oral peptide drug development. Here, we present a systematic analysis of (i) the gut stability of disulfide-rich peptide scaffolds, orally administered peptide therapeutics, and well-known neuropeptides and (ii) medicinal chemistry strategies to improve peptide gut stability. Among a broad range of studied peptides, cyclotides were the only scaffold class to resist gastrointestinal degradation, even when grafted with non-native sequences. Backbone cyclization, a frequently applied strategy, failed to improve stability in intestinal fluid, but several site-specific alterations proved efficient. This work furthermore highlights the importance of standardized gut stability test conditions and suggests defined protocols to facilitate cross-study comparison. Together, our results provide a comparative overview and framework for the chemical engineering of gut-stable peptides, which should be valuable for the development of orally administered peptide therapeutics and molecular probes targeting receptors within the gastrointestinal tract.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Ciclização , Ciclotídeos/química
7.
J Biol Chem ; 298(3): 101728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167877

RESUMO

µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Conotoxinas/química , Conotoxinas/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
8.
Bioconjug Chem ; 32(11): 2407-2419, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751572

RESUMO

Double-knotted peptides identified in venoms and synthetic bivalent peptide constructs targeting ion channels are emerging tools for the study of ion channel pharmacology and physiology. These highly complex and disulfide-rich peptides contain two individual cystine knots, each comprising six cysteines and three disulfide bonds. Until now, native double-knotted peptides, such as Hi1a and DkTx, have only been isolated from venom or produced recombinantly, whereas engineered double-knotted peptides have successfully been produced through enzymatic ligation using sortase A to form a seamless amide bond at the ligation site between two knotted toxins, and by alkyne/azide click chemistry, joining two peptide knots via a triazole linkage. To further pursue these double-knotted peptides as pharmacological tools or probes for therapeutically relevant ion channels, we sought to identify a robust methodology resulting in a high yield product that lends itself to rapid production and facile mutational studies. In this study, we evaluated the ligation efficiency of enzymatic (sortase A5°, butelase 1, wild-type OaAEP 1, C247A-OaAEP 1, and peptiligase) and mild chemical approaches (α-ketoacid-hydroxylamine, KAHA) for forming a native amide bond linking the toxins while maintaining the native disulfide connectivity of each pre-folded peptide. We used two NaV1.7 inhibitors: PaurTx3, a spider-derived gating modifier peptide, and KIIIA, a small cone snail-derived pore blocker peptide, which have previously been shown to increase affinity and inhibitory potency on hNaV1.7 when ligated together. Correctly folded peptides were successfully ligated in varying yields, without disulfide bond shuffling or reduction, with sortase A5° being the most efficient, resulting in 60% ligation conversion within 15 min. In addition, electrophysiology studies demonstrated that for these two peptides, the amino acid composition of the linker did not affect the activity of the double-knotted peptides. This study demonstrates the powerful application of enzymes in efficiently ligating complex disulfide-rich peptides, paving the way for facile production of double-knotted peptides.


Assuntos
Dissulfetos
9.
Toxins (Basel) ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437426

RESUMO

α-conotoxins are 13-19 amino acid toxin peptides that bind various nicotinic acetylcholine receptor (nAChR) subtypes. α-conotoxin Mr1.7c (MrIC) is a 17 amino acid peptide that targets α7 nAChR. Although MrIC has no activating effect on α7 nAChR when applied by itself, it evokes a large response when co-applied with the type II positive allosteric modulator PNU-120596, which potentiates the α7 nAChR response by recovering it from a desensitized state. A lack of standalone activity, despite activation upon co-application with a positive allosteric modulator, was previously observed for molecules that bind to an extracellular domain allosteric activation (AA) site at the vestibule of the receptor. We hypothesized that MrIC may activate α7 nAChR allosterically through this site. We ran voltage-clamp electrophysiology experiments and in silico peptide docking calculations in order to gather evidence in support of α7 nAChR activation by MrIC through the AA site. The experiments with the wild-type α7 nAChR supported an allosteric mode of action, which was confirmed by the significantly increased MrIC + PNU-120596 responses of three α7 nAChR AA site mutants that were designed in silico to improve MrIC binding. Overall, our results shed light on the allosteric activation of α7 nAChR by MrIC and suggest the involvement of the AA site.


Assuntos
Conotoxinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Feminino , Simulação de Acoplamento Molecular , Mutação , Oócitos , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/genética
10.
J Med Chem ; 64(13): 9484-9495, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34142550

RESUMO

TFF3 regulates essential gastro- and neuroprotective functions, but its molecular mode of action remains poorly understood. Synthetic intractability and lack of reliable bioassays and validated receptors are bottlenecks for mechanistic and structure-activity relationship studies. Here, we report the chemical synthesis of TFF3 and its homodimer via native chemical ligation followed by oxidative folding. Correct folding was confirmed by NMR and circular dichroism, and TFF3 and its homodimer were not cytotoxic or hemolytic. TFF3, its homodimer, and the trefoil domain (TFF310-50) were susceptible to gastrointestinal degradation, revealing a gut-stable metabolite (TFF37-54; t1/2 > 24 h) that retained its trefoil structure and antiapoptotic bioactivity. We tried to validate the putative TFF3 receptors CXCR4 and LINGO2, but neither TFF3 nor its homodimer displayed any activity up to 10 µM. The discovery of a gut-stable bioactive metabolite and reliable synthetic accessibility to TFF3 and its analogues are cornerstones for future molecular probe development and structure-activity relationship studies.


Assuntos
Fator Trefoil-3/síntese química , Fator Trefoil-3/metabolismo , Fenômenos Biofísicos , Células HEK293 , Humanos , Estrutura Molecular , Oxirredução , Dobramento de Proteína , Relação Estrutura-Atividade , Fator Trefoil-3/química
11.
J Med Chem ; 64(12): 8384-8390, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33979161

RESUMO

High susceptibility to proteolytic degradation in the gastrointestinal tract limits the therapeutic application of peptide drugs in gastrointestinal disorders. Linaclotide is an orally administered peptide drug for the treatment of irritable bowel syndrome with constipation (IBS-C) and abdominal pain. Linaclotide is however degraded in the intestinal environment within 1 h, and improvements in gastrointestinal stability might enhance its therapeutic application. We therefore designed and synthesized a series of linaclotide analogues employing a variety of strategic modifications and evaluated their gastrointestinal stability and pharmacological activity at its target receptor guanylate cyclase-C. All analogues had substantial improvements in gastrointestinal half-lives (>8 h vs linaclotide 48 min), and most remained active at low nanomolar concentrations. This work highlights strategic approaches for the development of gut-stable peptides toward the next generation of orally administered peptide drugs for the treatment of gastrointestinal disorders.


Assuntos
Fármacos Gastrointestinais/metabolismo , Agonistas da Guanilil Ciclase C/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Desenho de Fármacos , Estabilidade de Medicamentos , Fármacos Gastrointestinais/síntese química , Agonistas da Guanilil Ciclase C/síntese química , Humanos , Peptídeos/síntese química , Proteólise
12.
Biomedicines ; 8(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023152

RESUMO

Voltage-gated sodium (NaV) channel subtypes, including NaV1.7, are promising targets for the treatment of neurological diseases, such as chronic pain. Cone snail-derived µ-conotoxins are small, potent NaV channel inhibitors which represent potential drug leads. Of the 22 µ-conotoxins characterised so far, only a small number, including KIIIA and CnIIIC, have shown inhibition against human NaV1.7. We have recently identified a novel µ-conotoxin, SxIIIC, from Conus striolatus. Here we present the isolation of native peptide, chemical synthesis, characterisation of human NaV channel activity by whole-cell patch-clamp electrophysiology and analysis of the NMR solution structure. SxIIIC displays a unique NaV channel selectivity profile (1.4 > 1.3 > 1.1 ≈ 1.6 ≈ 1.7 > 1.2 >> 1.5 ≈ 1.8) when compared to other µ-conotoxins and represents one of the most potent human NaV1.7 putative pore blockers (IC50 152.2 ± 21.8 nM) to date. NMR analysis reveals the structure of SxIIIC includes the characteristic α-helix seen in other µ-conotoxins. Future investigations into structure-activity relationships of SxIIIC are expected to provide insights into residues important for NaV channel pore blocker selectivity and subsequently important for chronic pain drug development.

13.
Exp Biol Med (Maywood) ; 245(8): 733-739, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32241179

RESUMO

IMPACT STATEMENT: The present study combined the analysis of two transcriptional regulators, uVNTR and dVNTR, in the MAOA gene that is an enzyme responsible for the monoamine degradation and identified genetic interaction between these VNTRs in association with the nicotine dependence. The main impact is that when analyzing different populations in the genetic studies, the functionally meaningful variants should be combined rather than addressing individual elements separately (a mini polygenic risk score for a particular gene/locus). This combination is very rarely analyzed and therefore the study sets an example. Another impact is that we analyzed the genetic variability in the Asian population and therefore our data present a piece of information from underrepresented populations.


Assuntos
Repetições de Microssatélites , Monoaminoxidase/genética , Polimorfismo Genético , Fumar Tabaco/genética , Tabagismo/genética , Humanos , Masculino
14.
J Biol Chem ; 295(15): 5067-5080, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139508

RESUMO

Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.


Assuntos
Bicamadas Lipídicas/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptividade/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Venenos de Escorpião/toxicidade
15.
Bioconjug Chem ; 31(1): 64-73, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790574

RESUMO

Disulfide-rich animal venom peptides targeting either the voltage-sensing domain or the pore domain of voltage-gated sodium channel 1.7 (NaV1.7) have been widely studied as drug leads and pharmacological probes for the treatment of chronic pain. However, despite intensive research efforts, the full potential of NaV1.7 as a therapeutic target is yet to be realized. In this study, using evolved sortase A, we enzymatically ligated two known NaV1.7 inhibitors-PaurTx3, a spider-derived peptide toxin that modifies the gating mechanism of the channel through interaction with the voltage-sensing domain, and KIIIA, a small cone snail-derived peptide inhibitor of the pore domain-with the aim of creating a bivalent inhibitor which could interact simultaneously with two noncompeting binding sites. Using electrophysiology, we determined the activity at NaV1.7, and to maximize potency, we systematically evaluated the optimal linker length, which was nine amino acids. Our optimized synthetic bivalent peptide showed improved channel affinity and potency at NaV1.7 compared to either PaurTx3 or KIIIA individually. This work shows that novel and improved NaV1.7 inhibitors can be designed by combining a pore blocker toxin and a gating modifier toxin to confer desired pharmacological properties from both the voltage sensing domain and the pore domain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Modelos Moleculares , Venenos de Moluscos/química , Venenos de Moluscos/farmacologia , Caramujos/química , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/química
16.
PLoS One ; 14(6): e0216347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188829

RESUMO

Chloroplast sequences are widely used for phylogenetic analysis due to their high degree of conservation in plants. Whole chloroplast genomes can now be readily obtained for plant species using new sequencing methods, giving invaluable data for plant evolution However new annotation methods are required for the efficient analysis of this data to deliver high quality phylogenetic analyses. In this study, the two main tools for chloroplast genome annotation were compared. More consistent detection and annotation of genes were produced with GeSeq when compared to the currently used Dogma. This suggests that the annotation of most of the previously annotated chloroplast genomes should now be updated. GeSeq was applied to species related to coffee, including 16 species of the Coffea and Psilanthus genera to reconstruct the ancestral chloroplast genomes and to evaluate their phylogenetic relationships. Eight genes in the plant chloroplast pan genome (consisting of 92 genes) were always absent in the coffee species analyzed. Notably, the two main cultivated coffee species (i.e. Arabica and Robusta) did not group into the same clade and differ in their pattern of gene evolution. While Arabica coffee (Coffea arabica) belongs to the Coffea genus, Robusta coffee (Coffea canephora) is associated with the Psilanthus genus. A more extensive survey of related species is required to determine if this is a unique attribute of Robusta coffee or a more widespread feature of coffee tree species.


Assuntos
Café/genética , Genoma de Cloroplastos/genética , Anotação de Sequência Molecular/métodos , Filogenia , Evolução Molecular , Genes de Plantas , Anotação de Sequência Molecular/normas , Análise de Sequência de DNA
17.
Subst Abuse ; 13: 1178221818822979, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728715

RESUMO

Tobacco is legally permitted for adults, easily available, and the prevalence of smoking is high. Tobacco use is the largest preventable risk factor for human disease. To reduce smoking, many countries have introduced public policy to restrict the distribution of tobacco. The aim of this study was to analyse tobacco smoking and nicotine dependence in Central Vietnamese men around Hue and Da Nang cities. Nicotine dependence was measured using the Fagerström Test for Nicotine Dependence (FTND) score. The cohort contained total of 1822 Central Vietnamese men from Hue and Da Nang: 1453 smokers and 369 non-smokers. Individuals completed a questionnaire and factors such as smoking initiation, quitting behaviour, and success in quitting were also recorded. In the smoking group, the average amount of time in which the individual had smoked was 26.4 years. Average FTND value was 4.02, median was 4, the first quartile was 2, and the third quartile was 6. In all, 431 smokers (30%) had an FTND score of 6 or higher; an FTND score of this value is considered to equate to an individual having high nicotine dependence. Therefore, it could be noted that high nicotine dependence is very common in Central Vietnam. High nicotine dependence was significantly correlated with years of smoking. The longer the smoking period, the higher the FTND score. A high FTND score correlated with the individual being less likely to successfully quit smoking. The results of the questionnaire demonstrate that even when there is no restriction in public policy concerning the distribution of tobacco, individuals still wish to quit smoking. This study identified a high prevalence of severe nicotine dependence in Central Vietnamese men and the majority smokers wished to quit smoking. Consequently, the results of this study highlight the acute need for a specific programme to aid smokers in Central Vietnam to quit smoking.

18.
Plant Cell Environ ; 42(4): 1139-1157, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30156702

RESUMO

The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn365 and Asn422 were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850). MS revealed that AtGAL1 was bisphosphorylated at Tyr38 and Thr39 and glycosylated at four conserved Asn residues. When AtGAL was incubated in the presence of a thiol-reducing reagent prior to immunoblotting, its cross-reactivity with anti-AtGAL1-IgG was markedly attenuated (consistent with three predicted disulfide bonds in AtGAL1's apple domain). Secreted AtGAL1 polypeptides were upregulated to a far greater extent than AtGAL1 transcripts during Pi deprivation, indicating posttranscriptional control of AtGAL1 expression. Growth of a -Pi atgal1 mutant was unaffected, possibly due to compensation by AtGAL1's closest paralog, AtGAL2 (At1g78860). Nevertheless, AtGAL1's induction by numerous stresses combined with the broad distribution of AtGAL1-like lectins in diverse species implies an important function for AtGAL1 orthologs within the plant kingdom. We hypothesize that binding of AtPAP26-S2's high-mannose glycans by AtGAL1 enhances AtPAP26 function to facilitate Pi-scavenging by -Pi Arabidopsis.


Assuntos
Fosfatase Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactoquinase/metabolismo , Fosfatos/deficiência , Fosfatase Ácida/isolamento & purificação , Proteínas de Arabidopsis/isolamento & purificação , Células Cultivadas , Cromatografia em Gel , Dissacarídeos , Galactoquinase/isolamento & purificação , Glucuronatos , Fosfatos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Regulação para Cima
19.
Front Pharmacol ; 9: 1398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559666

RESUMO

Nicotine dependence is an addiction to tobacco products and a global public health concern. Association between the SLC6A4 polymorphisms and nicotine dependence is controversial. Two variable number tandem repeat (VNTR) domains, termed HTTLPR and STin2, in the SLC6A4 gene are well characterized transcriptional regulatory elements. Their polymorphism in the copy number of the repeat correlates with the particular personality and psychiatric traits. We analyzed nicotine dependence in 1,804 participants from Central Vietnam. The Fagerström Test (FTND) was used to evaluate the nicotine dependence and PCR was used to determine the SLC6A4 HTTLPR and STin2 VNTRs. The HTTLPR VNTR was associated with difficulties to refrain from smoking in a prohibiting environment. The STIn2 10/10 genotype was associated with (1) years of smoking, (2) difficulties to quit the first cigarette, and (3) higher number of cigarettes smoked per day (CPD). Stratification analysis was used to find the genetic interaction between these two VNTRs in nicotine dependence as they may synergistically regulate the SLC6A4 expression. Smokers with the S/S HTTLPR genotypes showed a much stronger association between STin2 10/10 variant and CPD. This finding is consistent with the molecular evidence for the functional interaction between HTTLPR and STin2 in cell line models, where STin2 has described as a stronger expressional regulator. Similarly, we found that STin2 is a much stronger modifier of smoking with 10/10 genotype related to higher nicotine dependence. The present study supports genetic interaction between HTTLPR and STin2 VNTRs in the regulation of nicotine dependence with the dominance of the STin2 effects. This finding could be explained by their differential effect on the SLC6A4 expression.

20.
Cancers (Basel) ; 10(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799479

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with 1 and 5-year survival rates of ~18% and 7% respectively. FOLFIRINOX or gemcitabine in combination with nab-paclitaxel are standard treatment options for metastatic disease. However, both regimens are more toxic than gemcitabine alone. Pelareorep (REOLYSIN®), a proprietary isolate of reovirus Type 3 Dearing, has shown antitumor activity in clinical and preclinical models. In addition to direct cytotoxic effects, pelareorep can trigger antitumor immune responses. Due to the high frequency of RAS mutations in PDAC, we hypothesized that pelareorep would promote selective reovirus replication in pancreatic tumors and enhance the anticancer activity of gemcitabine. Chemotherapy-naïve patients with advanced PDAC were eligible for the study. The primary objective was Clinical Benefit Rate (complete response (CR) + partial response (PR) + stable disease (SD) ≥ 12 weeks) and secondary objectives include overall survival (OS), toxicity, and pharmacodynamics (PD) analysis. The study enrolled 34 patients; results included one partial response, 23 stable disease, and 5 progressive disease. The median OS was 10.2 months, with a 1- and 2-year survival rate of 45% and 24%, respectively. The treatment was well tolerated with manageable nonhematological toxicities. PD analysis revealed reovirus replication within pancreatic tumor and associated apoptosis. Upregulation of immune checkpoint marker PD-L1 suggests future consideration of combining oncolytic virus therapy with anti-PD-L1 inhibitors. We conclude that pelareorep complements single agent gemcitabine in PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...